代表性论著:1.B. B. He, B. Hu, H. W. Yen, G. J. Cheng, Z. K. Wang, H. W. Luo*, M.X. Huang*.High dislocation density–induced large ductility in deformed and partitioned steels, Science, Volume 357, Issue 6355, 1029–1032, 8 September 2017. 2.Bin Hu, Haiwen Luo*. A novel two-step intercritical annealing process to improve mechanical properties of medium Mn steel. Acta Materialia, Volume 176, 1 September 2019, Pages 250-2633.Bin Hu, BinBin He, GuanJu Cheng, HungWei Yen, HaiWen Luo*. Super-high-strength and formable medium Mn steel manufactured by warm rolling process. Acta Materialia, Volume 174, 1 August 2019, Pages 131-1414.Xiaohui Wang, Huanhui Leng, Bo Han, Xiao Wang, Haiwen Luo*. Solidified microstructures and elastic modulus of hypo-eutectic and hyper-eutectic TiB2-reinforced high-modulus steel. Acta Materialia, Volume 176, 1 September 2019, Pages 84-95. 5.Minghao Zhang, Anne-Fran?oise Gourgues-Lorenzon*, Esteban P. Busso, Haiwen Luo, Mingxin Huang. Recrystallisation-assisted creep of an austenitic Fe-Ni alloy under low stresses after hot deformation. Acta Materialia, Volume 153, July 2018, Pages 23-346.Jianing Zhu, Haiwen Luo, Zhigang Yang, Chi Zhang, Hao Chen. Determination of the intrinsic α/γ interface mobility during massive transformations in interstitial free Fe-X alloys. Acta Materialia, Volume 133, July 2017, Pages 258-268.7.Feng Yang, Haiwen Luo*, Enxiang Pu, Shulan Zhang, Han Dong. On the characteristics of Portevin–Le Chatelier bands in cold-rolled 7Mn steel showing transformation- induced plasticity. International Journal of Plasticity, 103(2018), 188-202, https://doi.org/10.1016/j.ijplas.2018.01.0108.Bin Hu, Haiwen Luo*. A strong and ductile 7Mn steel manufactured by warm rolling and exhibiting both transformation and twinning induced plasticity. Journal of Alloys and Compounds, 725 (2017), 684-693 9. Jianing Zhu, Haiwen Luo, Zhigang Yang, Chi Zhang, Sybrand van der Zwaag, Hao Chen, Determination of the intrinsic ??? interface mobility during massive transformations in interstitial free Fe-X alloys. Acta Materialia 133 (2017) 258-268 10.Binbin He, Haiwen Luo*, Mingxin Huang. Experimental investigation on a novel medium Mn steel combining transformation-induced plasticity and twinning induced plasticity effects. International Journal of Plasticity, Vol.78, 2016, 173-186. http://dx.doi.org/l0.1016/jjjplas.2015.11.00411.Haiwen Luo*, Sybrand van der Zwaag. Analytical Approach to Model Heterogonous Recrystallization Kinetics Taking into Account the Natural Spatial Inhomogeneity of Deformation. Metallurgical and Materials Transactions A, Vol.47A, 2016, 231-238, DOI: 10.1007/s11661-015-3200-112.Xinan Luo, Xiaoyan Zhong, Haiwen Luo, Huihua Zhou, Cunyu Wang, Jie Shi. Mn Diffusion at Early Stage of Intercritical Annealing of 5Mn Steel. Journal of Iron and Steel Research International. Vol.22, 2015, No.11: 1015-101913.Haiwen Luo*, Han Dong, Mingxin Huang. Effect of intercritical annealing on the Lüders strains of medium Mn transformation-induced plasticity steels. Materials & Design, 2015, Vol.83, 42–48. http://dx.doi.org/10.1016/j.matdes.2015.05.08514.Haiwen Luo*, Han Dong. New ultrahigh-strength Mn-alloyed TRIP steels with improved formability manufactured by intercritical annealing. Materials Science and Engineering: A, 2015, A626, 207–212, http://dx.doi.org/10.1179/Y.15.Haiwen Luo*. Comments on “Austenite stability of ultrafine-grained transformation-induced plasticity steel with Mn partitioning” by S. Lee, S.J. Lee and B.C. De Cooman. Scripta Materialia, Vol. 66, 2012, 829-83116.Haiwen Luo*, Jie Shi, Chang Wang, Wenquan Cao, Xinjun Sun, Han Dong, Experimental and numerical analysis on formation of stable austenite during the intercritical annealing of 5Mn steel, Acta Materialia Vol.59, 2011, 4002-401417.黄 俊, 罗海文*. 退火工艺对含Nb 高强无取向硅钢组织及性能的影响, 金属学报,Vol.54, 2018, No.3: 377-38418.阳锋, 罗海文, 董瀚. 退火温度对冷轧7Mn钢拉伸行为的影响及模拟研究 , 金属学报2018, 54 (6): 859-867.DOI: 10.11900/0412.1961.2017.00315 19.曾贵民, 罗海文*, 李军, 龚坚, 黎先浩, 王现辉. 取向硅钢低温加热工艺中渗氮工序的实验与数值模拟研究,金属学报,Vol.53, 2017, No.6, 743-75020.马超,罗海文*. GCr15轴承钢热处理过程中碳化物的析出与演变行为, 材料工程, Vol.45, 2017.No.6, 97-10321.龚坚,罗海文. 新能源汽车驱动电机用高强度无取向硅钢片的研究与进展. 材料工程, Vol.43, 2015, No.6, 102-112 22.罗海文*, 陈凌峰,向睿, 潘丽梅, 取向硅钢中脱碳工艺的数值模拟, 科学通报,科学通报,2014,Vol.59,No.10, 866-871 23.罗海文*,潜伟,董瀚,古代大马士革刀花纹形成机制的理论分析,科学通报,2014 年 第59 卷 第9 期:833 ~ 842 24.何忠治,赵宇,罗海文,《电工钢》专著,冶金工业出版社,北京,2012软件著作25.罗海文,孙飞龙。钢中夹杂物的帕累托评级软件,开发完成日期:2019.09.28;证书号:**,登记号:2018SR904406 获奖:专利1.罗海文,温鹏宇。超快速加热工艺生产高强塑积中锰冷轧钢板的方法。国家发明专利, 申请号:7.3,申请日 2017年 04月 20日,专利权人:北京科技大学,授权公告号:CN B;授权公告日:2019.05.032.罗海文董瀚。具有优良塑性的超高强度中锰汽车钢板及制备方法,国家发明专利,申请号: 8.0,申请日:2016.11.06,专利权人:钢铁研究总院, 授权公告号:CN B;授权公告日:2019.01.183.罗海文。一种超高强度塑性积的冷轧中锰钢及其制备方法,国家发明专利,申请号: 5.3,申请日:2016.06.21,专利权人:北京科技大学,授权公告号:CN B;授权公告日:2018.10.024.罗海文,黄俊。一种驱动电机用高强度冷轧无取向硅钢及制造方法。申请号:2.5,申请日:2017-11-27,专利权人:北京科技大学, 授权公告号:CN B;授权公告日:2019.02.035.罗海文,温鹏宇。超快速加热工艺生产超高强度马氏体冷轧钢板的方法。国家发明专利, 申请号:4.4,申请日 2017年 10月 26日,授权公告号: B,授权公告日:2018.09.14;PCT专利国际申请号:PCT/CN2018/105128, PCT专利国际申请日期:2018-9-12; Producing Ultra-High-Strength Martensitic Cold-Rolled Steel Sheet By Ultra Rapid Heating Process。美国专利申请文件,申请号:16/252908,申请日:2019年1月21日; 欧洲专利申请文件,申请号:**.2,申请日:2019年1月22日6.罗海文,杨平。一种可耐400度高温的轴承钢的制备方法,国家发明专利, 申请号: 8.8,申请日:2017:3月28,专利权人:北京科技大学,授权公告日期:2018-7-27,授权公告号: CN B7.罗海文,黄俊。一种高强度含铜无取向硅钢及制造方法。国家发明专利,申请号:1.2,申请日: 2017日04月 20日,专利权人:北京科技大学,授权公告日:2018.05.18,授权公告号:CN B8.罗海文。双相孪生诱导塑性超高强度汽车钢板的化学成分及生产工艺,国家发明专利,申请号: 20**.9,申请日:2014.11.20,已授权,授权日期:2017-02-22,授权公告号: B专利号: ZL 9.99.罗海文, 董瀚, 时捷。一种低屈强比、高强度汽车用双相钢板及生产方法,国家发明专利,申请号:4.9;申请日:2013年10月24日,授权公告号CN B, 授权公告日:2015.04.29, 已授权10.罗海文, 董瀚, 干勇, 翁宇庆, 时捷。一种连续退火工艺生产高强塑积汽车用钢板的方法,国家发明专利,申请号:9.6 申请日:2012-10-31,授权公告号 CN B,授权公告日 2014.03.26
主要科研项目/业绩:研究成果?具有优秀强塑积的第三代汽车用TRIP钢(中高Mn含量、高残余奥氏体分数)设计、制备等相关基础研究;第三期973项目、自然科学基金重点项目两期资助,目前已经有数项授权国家发明专利、包括Science、Acta/Scripta Materialia等顶级期刊数十篇论文;?取向硅钢成分及其关键工艺的研究,包括:?脱碳工序的脱碳动力学的定量数学模型研发;?低温加热工艺下的渗氮工序的抑制剂数量与分布及其定量数值模型;?低温加热工艺下的高温退火过程中抑制剂的演变、二次再结晶温度及其数学模型研究;?Sn对取向硅钢退火组织和磁性的影响?新能源汽车驱动电机用高强度无取向硅钢的研发,获得授权发明专利?成本经济型含Nb高强无取向硅钢, ?力学性能与磁性俱佳的含Cu高强无取向硅钢, ?超高强不锈钢研发,抗拉强度超过1800MPa,K1C为80J ?轴承钢研究?超纯净轴承钢夹杂物评级模型研究,开发出夹杂物评级的帕累托(GPD)概率模型,可以对目前国标无法区分的超纯净轴承钢的夹杂物冶金质量进行评级;获国家软件著作权;?航天用高温轴承钢研发,是针对目前M50钢种改进型,将其高温硬度显著提高,目前已经获得国家发明专利;